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EFFECT OF SLIGHT BLUNTING OF LEADING EDGE OF

AN IMMERSED BODY ON THE FLOW AROUND IT

AT HYPERSONIC SPEEDS*

By G. G. Chernyi

In the present paper, an attempt is made to extend the theory of the

flow around slender bodies with tapered leading edges at hypersonic speeds

[i, 2] to cases where the leading edge of the immersed body is slightly

blur, ted. This generalization of the theory is of great import, since it is

impossible to achieve ideally sharp leading edges of slender airfoils or

ideally sharp leading edges of airframes, in reality. Even with the most

painstaking fabrication of models, the leading edges will be several microns

thick and, after the models have been immersed for a short period in a

supersonic flow, the thin leading edges of the models will become degraded

and acquire a thickness of the order of Z0 microns. In the case of large-

scale objects, it is hardly possible to speak of the thickness of the leading

edges as being less than one or several tenths of a millimeter.

But it is not only due to difficulties in manufacturing technology and

in the strength of the materials that ideally sharp leading edges on airfoils

and airframes are impossible to achieve in practice. At hypersonic flight

speeds, the thin leading edges would inevitably melt away because of the

impossibility of bleeding off the large quantities of heat liberated in the

flow of gas adjacent to the leading edge of the body through the thin tips.

Accordingly, instead of bodies with ideally tapered leading edges, we

have to deal in reality with bodies that are slightly blunted at the leading

edge. It is just such blunted bodies, in which the dimensions of the blunted

portion are small compared to the longitudinal dimensions, that we propose

to discuss in the present contribution.

In the case of hypersonic flow around a blunt-nosed body, a detached

shock wave forms ahead of the body, with a subsonic zone adjacent to the

shock. This circumstance renders the theoretical study of such flow

*Translated from Izvestiia Akademia Nauk USSR, 0tdelenie

Tekhnicheskikh Nauk, no. 4, 1958, pp. 54-66.



patterns extremely difficult, especially when it is considered that the

small characteristic size of the blunted portion may make it necessary to

take into account gas viscosity effects in the vicinity of the leading edge
of the body.

Fig. i.
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One attempt has been made to elaborate a semi-empirical method for

taking the effects of leading-edge bluntness in slender airfoils into account,

in flow at moderate supersonic speeds [5]. The basic concept underlying

this approach may be illustrated with the aid of Fig. i. The flow in the

region between segment AC of the shock and the e_,treme characteristic BC,

extending from the surface of the body and having _ common point with the

acoustic-speed line, will be the same for different airfoils having a different

shape of tip bluntness. Neglecting the interaction _f disturbances proceed-

ing along the characteristics in the direction toward the body with disturb-

ances proceeding outward from the immersed body, the pressure on the

surface of the body to the right of the point B may )e obtained by super-

posing the pressure computed for the airfoil on the basis of Busemann's

formula on the pressure associated with the distur lances approaching the

body, which are independent of the airfoil geometr), at least over the seg-

ment BD, where those disturbances are most intense. Accordingly, in

order to compute the pressure distribution over di:ferent airfoils having

the same tip bluntness geometry, it is sufficient to have at hand data on

the flow pattern over one such airfoil, e.g. a plate. Experimental data on

the pattern of flow over a plate having a leading edt;e of elliptic shape with

an aspect ratio ranging from 0 {rectangular leading edge) to 8, and for the

range of Mach numbers from i.4 to i.8, are to be f)und in [6]. An analysis

of the results shows that consideration of the effecis of slight tip blunting

Available experimental data [3, 4] point to a significant dependence of the

flow pattern near the blunted leading edge of a plat,: on the Reynolds number

at Re values, computed with the aid of the characteristic size of the blunt

tip of the order of several thousands.



on the flow over an airfoil at moderate supersonic speeds introduces only

slight corrections into the results of the theory of flow over airfoils with

sharply tapered leading edges. The drag on a blunt-nosed airfoil may be

obtained in straightforward fashion by adding the blunt-tip drag (obtained,

say, experimentally) and the drag on the remainder of the airfoil, computed

in accord with theory of flow around tapered bodies, without taking into

account drag effects contributed by disturbances proceeding from the sub-

sonic region, since these are small in intensity.

However, the limited extent of the region of complex flow near the

blunted leading edge of the body, compared with the characteristic dimen-

sions of the body, does not always serve as a basis for neglecting effects on

the flow pattern on the scale of the entire body. Experimental data [4] and

theoretical considerations (see below) attest to that fact that, at hypersonic

speeds of flow, a slight blunting of the leading edge of a plate may signi-

ficantly alter the flow pattern and pressure distribution of the flow in a

region whose dimensions exceed by hundreds and thousands of times the

dimensions of the blunted portion per se.

In that case, we can count on obtaining a good approximation to the

description of the phenomena taking place in flow around slightly blunt-

tipped bodies, if we neglect the distortion of the body due to blunting, but

allow for the effect on the flow, replacing it by the effect of the concentrated

forces applied to the flow by the blunting. The problem of flow over slender

blunt-nosed bodies at hypersonic speeds was formulated in that manner by

the author in a previous paper [7] and was developed further in a number of

other contributions [8, 9].

t. Statement of the problem. Observing the statement of the problem as

indicated above, we treat the motion, in a gas at a velocity V, of a body in

which all forward-facing surface elements form small angles with the

direction of flow. We may consider as an exception the case where a small

leading portion of the body is blunted. The size of the blunted portion will

be assumed so small that it may be neglected when treating the flow in a

region having dimensions of the order of the longitudinal extent of the body.

The effect exerted by the blunted tip on the flow, manifesting itself over a

large region despite the small size of the blunted portion, is here replaced

by the effect of concentrated forces applied to the gas on the part of the

blunted tip. The magnitude of the concentrated forces may be assumed

known from experimental data or from a theoretical treatment of the flow

pattern in the vicimty of the leading edge of the body. At hypersonic speeds,

these forces may be determined to an approximation, e.g. by Newton's
formula.

We restrict ourselves to cases of symmetrical flow around airfoils

or around bodies of revolution. In the first case, we treat the pattern of

flow in the upper half plane (in the layer between two closely spaced parallel

planes), and in the second case we treat the flow pattern in the meridional

plane above the axis of symmetry (in the angular region between two closely

spaced planes passing through the axis of the body).



Fig. 2.

The effects of the blunted tip on the gas in the layer so delineated is

replaced by the resultant of those forces applied to the gas on the part of the

blunted tip in the direction of flight, and the resultant of those forces applied

to the gas in the direction perpendicular to the direction of flight. We may

designate as X and Y0 respectively, those resultants referred, in planar flow,

to a layer of unit width, and in axis-symmetrical flow, to the layer at an

angle 2w to the axis of symmetry. In computing the total forces replacing

the effect of the blunted tip of the flow, the excess pressure forces must be

taken into account, and in some cases the forces of viscous friction, since

gas viscosity may exert an appreciable effect on the flow pattern in the

neighborhood of the leading edge (in the case of a blunted tip of very small

size, the action of viscosity may be of the same order as the effect of

pressure forces, or significantly in excess of them). In flow around a b/unt-

tipped airfoil with a detached shock wave, the magnitude of forces X and Y

must be extended to include the excess pressure forces (and the forces of

viscous friction) acting on the gas from the direction of that portion of the

plane of symmetry located between the departing _hock wave and the leading

edge of the immersed body.

The force X, acting in the direction of flow ,_f the body, does work on

the gas, imparting energy to it. The energy of th_ gas in the layer of unit

width normal to the direction of flight increases as a result of the action

of the blunted tipby an amount E=X-I. The resultant force Y does no work

but, like the force X, imparts molnentum to the gas. The momentum im-

parted to the gas by the blunted tip in the directio1_ perpendicular to the

direction of flight, in the same layer of unit width, is equal to I_---Y/V.

We now make use of the equivalence, established in [i, 2, 10], between

the problem of hypersonic gas flow around slende: bodies and the problem

of nonsteady laminar gas flow (the law of planar cross sections). For a

blunt-nosed slender body, the equivalent problem )f nonsteady flow consists

in the following:

In a gas initially at rest, an energy E is liberated at a certain instant

of time at the plane (on a straight line), and a monlentum I is transmitted

to the gas at a normal to that plane (straight line); the energy E and the

momentum fare referred, respectively, to unit area and unit length of

charge. At the same instant of time, a flat-headec {round cylindrical) piston

begins to expand at a rate of travel U in the gas fr)m the point of energy

liberation. The motion taking place is to be detemnined. For the transition

from the problem formulated for unsteady flow to :he problem of steady flow

over a body in the direction of the x-axis at a speed of flow V, we must put

E-_X, I_Y/V, U:V tan a {where a is the angle of inclination of an element

of the profile contour or of the body of revolution to the x direction), and the

time t is introduced by means of the relation x_Vt.
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exact analytic solution of the problem, for E:/:0, has been obtained

[tt] only for the case where the effect of the initial gas pressure on the

flow may be safely neglected, and I=0, U=0 {problem of a powerful explo-

sion}. The flow then taking place is progressive in character and corre-

sponds to the hypersonic flow pattern over a blunt-headed plate fin the case

of laminar flow} or over a round cylinder with the flow perpendicular to the

end-face surface fin the case of axis-symmetric flow}. Under more general

conditions, an exact solution of the problem may be found in each concrete

case only by use of complicated numerical techniques, similar to those used

to find the solution of the problem of a point blast [t2-t4]. The problem

may be solved approximately, for example, with the aid of the method,

described in [t5], of expanding the solution into a series in powers of

{_-t}/{_/+i}, ¥ being the specific-heat ratio.

2. Flow around a plate with a blunt leading edge and around a round cylinder

with its end face normal to the oncoming flow. Consider {see Fig. 21 the

pattern of flow of a gas at hypersonic speeds over a flat plate of thickness

d having a blunted leading edge {we may also consider an infinitesimally

thin plate, but with a finite viscous friction force on the small segment next

to the leading edge}. In that case, in the equivalent probl'em of one-dimen-

sional unsteady flow with plane waves, we must assume E=/=0, U=0, i.e.,

the problem of motion developing in a gas at rest in response to the explosion

of a charge distributed over the plane must be treated. The parameters

defining such a flow are: the initialgas pressure P0, the initial density P0

the blast energy E {referred to unit charge area}, the specific-heat ratio ¥

of the gas, the distance r from the plane of the explosion, and the time t.

Since only three independent nondimensional combinations of those para-

meters may be set up, e.g._

¥, P0r/E and P0 t/P0 E,

the fundamental theorem of the theory of similitude and dimensionality [ti]

stipulates that allof the variables to be determined, after reduction to non-

dimensional form, will be functions of only those three parameters.

Replacingt and E according to the formulas

t =x/V and 2E = 2X = e x t/2 PO V2d

{where c x is the drag coefficient on the blunt tip), we find that in hypersonic

flow over a flat blunt-headed plate the dimensionless quantities to be deter-

mined are functions solely of the variables N, x/(cxMTd), and r/{cxM2d).

Thus, for example, for the pressure distribution over the surface of the

plate, i.e. at r=0, the formula



Po xM3 a (z.t)

is valid.

This formula indicates, in particular, that the extent of the region

subject to increased pressure in the neighborhood of the leading edge of the

plate increases very sharply as the Mach number increases (proportionally

to M3}. The shape of the leading surface of presslre discontinuity arising

in response to flow over the blunt-headed plate is determined by the
relation

OxM2 5 xM3 g (z.zl

Functions P and R may be found by numerical solution of the problem

of explosion, requiring the use of high-speed comt uters ; however, as indica-

ted above, up to the present time the solution has :,een obtained only for the

case of flow patterns e)ahibiting spherical waves {1:last waves originating at

a point} for _=i.4. For a high-intensity shock, wl_en the initial gas pressure

P0 is negligibly small compared to the pressure downstream of the shock,

the pressure cannot affect the flow pattern. Accordingly, in that case the

parameter P0 as well as the Mach ntunber are immaterial, so that Eq. (2.i)

and {2.2} must assume the form

v2 !

} (z. 3)

Functions _(7) and _1(7) cannot be determined solely from considera-

tions derived from the theory of similitude and dir,_ensionality; their values

Fig. 3.
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may be obtained from an exact solution of the problem of the explosion of

a flat charge, with the initial pressure data left out of account [ii]. These

values represented by the solid lines in Fig. 3.

The right-hand members of Eqs. (2.3) constitute the principal terms

in the quantities _p/(t/2 p0 V2) and r*/d, for small values of the variable
x "_dl(cxM ).

The following terms in that notation are to be found in [16, 17]. In the

paper referred to above [15], we find an approximate solution to the problem

of the explosion of a flat charge by the method of expanding the solution into

a series in powers of (_-i}/(_+t).

Compare the results of the theory outlined above, expressed by Eqs.

(2.i) and (2.2), with the more exact calculations of the flow over a flat plate

with a blunt leading edge [i8] and with the available empirical data.

Figure 4a shows values obtained by the method of characteristics, at Mach

numbers of 5.00, 6.86, and 9.50, for the pressure on a flat plate whose

leading edge presents the form of a wedge with an angle at the vertex such

that the speed of flow aft of the attached shock wave forming is exactly

equal to the speed of sound. The graph also gives the pressures on a

plate with a hemi-cylindrical leading edge, at Mach 14,, also computed by

using the method of characteristics FI9_. Values of x/(cxM3d ) and Ap/po

are laid out along the horizontal and vertical axes, in accord with

M •

_'0

M, i
• $_ t.ff5 *'_
• 605 tJ76

o _OO Ur4
h

\
I"

....... i .........

/O-I Ig- t I _.

c_M_ d
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• IJ 1

10"z W's I .r
CaM_

Fig. 4a. Fig. 4b.

o

Eq. (2.i) (for a wedge-shaped tapered leading edge, c x is readily found from

the equations for oblique shocks, and for the half-round edge, c x is taken

from the refined Newton equation [20] as equal to 2/3 Cx_). Eliminating the

small area around the break" point of the immersed contour, all of the

pressure distributions plotted in those coordinates coincide. Fig. 4b. The

shape of the shock waves corresponding to the cases cited of flow over a

plate with a wedge-shaped tapered leading edge. Here again, starting with

a slight distance from the leading edge, all the curves are in good agreement.

The results cited demonstrate that the law of planar cross sections

may be used in studying flow over slender blunt-nosed bodies at hypersonic
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speeds. The pressure data obtained from Eq. (Z.3) agree satisfactorily

with the major portion of the curves computed by the method of characteris-

tics, up to values of x/(cxM3d ) roughly equal to i/t00.

Figure 5 illustrates the results of two series; of experiments on flow

at hypersonic speeds past blunt-edged plates. The first series of experi-

ments was performed in a helium-filled wind tunnt_l at Mach numbers of the

order of i2 [4]. The model used was a i0 °wedge, one side of the wedge

was made in the form of a flat cross section normal to that side of the

wedge. The second series of experiments was carried out in a wind tunnel

operating on air at about Mach 7, with a similar model, but with an apex

angle of 20 ° [2i].

In the first series of experiments, experimeltal values of Ap/p0 and
of r*/(CxMZd) as a function of x/(cxM3d ) for differ ._nt plate thicknesses and

different Mach data on oncoming flow showed good agreement and closely

confirmed the theoretical equations (2.3) at "y_5/B when the Reynolds num-

ber, arrived at on the basis of the plate thickness, exceeded 5000-6000.

When the Reynolds number was reduced below that range of values, the

effect of viscosity on the flow pattern in the vicinity, of the leading edge

took on importance, and the value of c x that had to be adopted in working up

the experiments to secure agreement had to be sharply increased.

During the second series of experiments, th( Reynolds number did not

exceed Z000, and its effect was felt over the entire range investigated. At

the highest Reynolds number, the experi_nental pr¢ssure data showed excel-

lent agreement with F..q. (2.3) at N=7/5, assuming Cx=C _. At smaller

Reynolds numbers, c x rose sharply, as in the first serlesr of experiments.

Fig. 6.

16 /.8 2"
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Thus the experimental findings likewise confirm the conclusions

based on the theory outlined; it turns out that the effect of viscosity can

be neglected in determining the value of c x on the blunted edge, if the

l%eynolds number exceeds 2000-6000 (the data available does not permit us

to establish the Re number with greater precision).

Note further that, according to the theory (Fig. 3), the effect of the

blunted tip falls off as the ratio of specific heats y is reduced; this fall-off

is not very pronounced as y varies from 5/3 to 7/5. The results of the

experiments (Fig. 5) confirm this conclusion derived from the theory.

We may now proceed to a consideration of longitudinal flow at some

hypersonic speed V past a round cylinder of diameter d having a blunted

forward part. Repeating the same reasoning employed--for flow over a

flat plate, we find that in this case the flow is determined by the dimen-

sionless parameters Y, x/(_/CxMZd), and r/(_/_xMd). In particular, the

pressure distribution over the surface of the cylinder and the shape of the

shock wave are determined by the equations

z_p x_ p i i r* (z.4)

At very high hypersonic speeds, these equations take on the form

d r*_ _l(X) cxl/4(_) I/2
mp

1 2
(z.s)

Graphs of the functions _ (Y) and'_i(Y), plotted by using the exact

solution for the problem of the powerful explosion of a linear charge [Ill

are shown in the solid lines in Fig. 6.

The equations derived point to the existence of a high-pressure area

near the blunted leading end of the cylinder. At very high hypersonic

speeds, the extent of the high-pressure area increases with the square of

the Mach number (when the Reynolds number does not affect the magnitude

of Cx); as y decreases, the size of that area is also reduced.

Unfortunately, we do not have data on the pressure distribution over

the surface of the cylinder and on the shape of the shock wave at distances

many times in excess of the diameter of the cylinder and at high Mach

numbers, for comparison with the results of the theory.

To conclude the present section, we Inay note that the solution of the

problem of blast from a flat or linear charge a!so describes the pattern of

flow around an arbitrary profile or body of revolution in a region whose

dimensions are large compared to the transverse dimensions of the body.

To describe the pattern of flow in a region where the shock wave has lost

its strength, we must, of course, use the solution that takes the initial gas

pressure into account.
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3. Flow around a thin wedge with a blunted leading edge. As the simplest

example of hypersonic flow around an airfoil with a blunt leading edge,

consider the flow around a thin blunt-edged wedge. For that case, in the

equivalent problem of unsteady gas flow with plane waves, Eq_ 0, U=V tan a

const _ 0 {where a is the half-angle of the wedge taper). This flow is not

"progressive" even when initial gas pressure is small enough to be neglected,

compared with the pressure aft of the shock. An approximate solution of the

problem may be obtained with the aid of the method involving expansion of the

solution into a series in powers of {y-i)/(¥+i) outlined in [15]. However,

taking into account the fact, that, in the general case, even this method turns

out to be rather laborious, let us simplify the method still further, enabling

us to obtain a solution by elementary means that retains a satisfactory

degree of accuracy.

The core idea of the method of expanding the solution into a series in

powers of {¥-I)/(¥+I) is that when the gas in the shock wave is strongly

compressed, the bulk of the gas in the perturbed region is concentrated in

a thin layer adjacent to the shock wave. The principal change in the gas

pressure takes place precisely in that layer, wher ._as in the rest of the

region (which may not even exist) the change in pr_ssure due to the low gas

density is extremely small. In order to obtain the solution in elementary

form, we assume that the thickness of the layer next to the shock, which

involves the entire mass of the gas, is negligible and that the change in

pressure in the perturbed region outside that layer may be neglected as well.

Then, applying the energy equation to the gas within the perturbed

region, we obtain:

po_ + P-2--(v - vo) : E - + p _o(t)
7- i 7- i

{3._)

F
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Here, v is the volume bounded by the surface of the shock wave, and

v 0 is the volume swept out by the piston. In the ca _e of plane waves, v is

the distance from the plane of the blast to the shock wave, and v 0 is th-e dis-

tance to the piston. To use this equation to find the law of propagation of

the shock wave R0{t), and with it all of the charactcristics of the flow

(according to [i5]), we may use the principal terms in the expansions of

functions of R and p in powers of (y-t)/(_+i), i.e. we may assume

R0 02
PCr_O2-" + PObR - --_o P -

_t 7 _l v

{the dot denotes differentiation with respect to time, v-----I for plane waves,

and v=2. for cylindrical waves). However, in order to confer an elementary

character onthe whole theory, we use the momentu_a equation as a second

equation for determining the functions R0(t ) and p(tl. This equation has the
following form:
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f0t (3.z)

where S is the surface area of the shock wave; in the case of plane waves,

S=t. In Eqs. (3.i) and (3.Z), the value of aR/St represents the velocity of

the gas, and is the same for all gas particles. We assume that the velocity

of flow of the gas particles over the entire layer is the same as at points

adjacent to the shock, i.e. we shall suppose that:

_t 7 i o-
+ % /

_3.3)

(despite the poorer accuracy, we may assume aR/at=l_0; note that all of
the formulations presented above agree with each other when the gas in the

wave is infinitely compressed, i.e. at _ --* t, P0 --* 0).
Equations (3.t) and (3.3) enable us to determine the flmctions R0(t) and

p(t) for a given law governing the travel of the piston, v0(t). In the case of

flow over a wedge, v0=Ut, v=R0, and S=t.
We restrict ourselves now, for the sake of simplicity, to the case

where the effect of the initial pressure on the flow may be neglected. Elim-

inating the pressure _p_pfrom Eqs. (3.t) and (3.2), we obtain a single equation
for the law governing the propagation of the shock wave (the subscript 0 of
function R is omitted).

OoRi + - ut) OR7 +----i 7 +----i

We shall defer to later the case U----0, considered in a more accurate

formulation in Section 2, and now introduce the scale L=(E--IU)/P0 U2 as a

measure of length, the scale L/U as a measure of time, and the scale

p0 U2 as a measure of the pressures.
The equation written above now takes on the form:

i (R- t)!R_- _ +i÷R_ i R_2
7- i dt 2 7+1

(3.4)

This equation has the unique solution R*(t), satisfying the condition

R(O)_O and existing for t > O. At small values of t:
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At large values of t, R _ tends to the asymptote:

R=T +I
t + (7 - l) (3.5)

2

which is an exact solut_orL of Eq. (3.4.).

Since R#R_=0(tq]) at t--*0, the solution R_(t) corresponds to the case

I=0. For small values of the half-angle a at the apex of the wedge, the value

of IU-----Y tan a is small compared to the value of E--_X (Y is of the order of X

or less). This enables us to use the solution R_ to evaluate the effect of the

blunted tip of the thin wedge on the pattern of flow past it at hypersonic

speeds. Proceeding to the variables characterizing steady flow, we find

that the shape of the shock is governed by the equation:

r* Cx I_ tanhmx 71
- R* (3.6)

d 4 tan2_ cx d

We obtain the following equation for the pressure distribution over the

wedge

00V2tan2c_ Cx _ 7 (3.7)

where M/(t,y) is used to designate the function R@R_IN+I) -1. Graphs of Eqs.

(3.6) and (3.7) are shown in Fig. 7. The position of _he shock in flow past a

sharp-edged wedge is also illustrated in Fig. 7.

It follows from Eq. (Z.5) that the direction of the shock wave produced

in flow past a blunt-tipped wedge tends to the same direction as in flow

past a sharp wedge as we proceed further downstream, though the shock is

displaced farther from the surface of the wedge. This additional displace-

ment is due to the appearance of a region of rarefied gas near the surface

of the wedge, and is:

7 - 1 Cx
d

4 tan_

according to Eq. (3.5), i.e. it may be substantial for slender wedges.

The absence of experimental data prevents us from making a detailed

comparison between the results of calculation and the experimental results.

Fig. 8 (see p. 15)is a schlieren interfergram of the flow of helium (y=5/3)

past a blunt-tipped 10 ° wedge [4], at Mach IZ.7 and l_eynolds number

15,000.

Figure 9 shows, for purposes of qualitative co_nparison, the flow

pattern obtained by calculations based on Eq. (3.6) for M=co and _/=7/5.
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In the upper half plane, the oncoming flow is directed along the surface of the

wedge, which corresponds to a value of ct=0 in Eq. (3.6). Making use of the

asymptote of the function R* for small values of t, we find that, at a=0:

213 3l
>°°v (3.8)

_/3 (3] Jr. [i_6 (,+ :)2(,- z__ 2/3

In order to judge the accuracy of these equations, the broken line in

Fig. 3 is used to give the values of the first factors in the right-hand mem-

bers of the equations, corresponding to the functions K(_) and _i(_) in Eqs.

{Z.3), obtained in the exact solution of the probelm of ga_ flow past a blunt-

edged plate at M=oo in the statement of the problem as presented.

We now calculate the total drag X on a wedge of length fwith a blunted

leading edge:

X _ = 2X + 2 p tan _ dx = 23( + 2XW tan3_

C x

The drag coefficient for that wedge is expressed by the equation:

= -_['i + W(t)_ tan2c_ = -- tan3c_C x

C X
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A graph for this relationship is plotted in Fig. 10 for small values

of t. At large values of t, the approximate relationship:

As the equations obtained above demonstrate, a slight blunting of the

leading edge results in a significant increase in the drag coefficient c x in

the case of thin wedges. Thus, the drag on a blunt wedge with a taper half-

angle of 6 ° is twice the drag on a sharp wedge even at I/d=500. Accordingly,

the leading edges must be tapered down with great care to avert a sharp in-

crease in drag on airfoils and stabilizing vanes in flow at hypersonic speeds.

However, as indicated at the beginning of the artic1% it is hardly possible

to meet this requirement in practice.

F

3

5

0

\

-- sharp-edged-

wedge _---
!

M Qz tlZ

Fig. 9. Fig. 10.

It should also be borne in mind that the centez of pressure of an airfoil

with a blunt leading edge is displaced forward, compared to the center of

pressure of the same airfoil with a sharp edge. This displacement may be a

sizeable one. Thus, for an airfoil in the form of a plate with a blunt leading

edge, at high hypersonic speeds, Eq. (2.3) indicates that the center of pres-

sure is situated at i/4 of the length of the plate fron_ the leading edge, and

not at the midline of the chord, as in an infinitesimally thin plate.

In concluding the present section, let us point _ut that the approximate

solution outlined for the case of flow past a thin sharp wedge yields

- 7 + 1 c_ P - 7 _ 1 _ 2

2 PoV2 2
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{IS=the angle of inclination of the shock to the direction of the oncoming

flow), which agrees with the equations derived from the exact theory for

lql =co.

F

3
5

4. Flow over a thin blunt-nosed cone. Using the same approximate state-

ment of the problem as in the preceding section, let us consider the problem

of the flow pattern past a blunt-nosed cone. In that case, we must set

v-_R z, v0=V2t z, and S-----ZtrR, in the energy and momentum equations (3.1)

and (3.2). We employ Eq. (3.3), to obtain the speed 8R/St of the particles

in the perturbed region, i.e. we allow for the initial pressure of_,the gas.

Assuming U4=0, we now introduce the scale L=(E/wPoUT-)_t2 as a

measure of length, and the scale L/U as a measure of time, and we define

p--p0-----poU2_p. Then Eqs. (3.t) and (3.Z) assume the following form:

1 R2 + +
Y

:i+ +2 + d_

7 - I 7K 2

(5.z)

K-_I /0 tR2 7--_II - ! : IU +2E Ap R dt

Here, K=U ](YP0/P0 )I/_ _--- M tan a, the parameter of similarity for

hypersonic flow. At small values of t, the initial energy associated with the

gas in the perturbed region and the work done on the gas by the piston are

small compared to the energy liberated in the explosion, and the solution

of the set of equations (5.i) becomes an approximate solution of the problem

of a powerful blast that sets in motion cylindrical blast waves (the value of

IU/E must then be assumed to be negligible, as in section 3:

R = _-4(7 + i)2(7 -i)-_57U _ tl/2
(s.z)

7 - i t-iAp : 4(37 - ]-)

These equations readily yield l_.q. (2.5), with the approximate values

_(¥) and'k-i(_). These values are given by the broken lines in Fig. 6.

F_,cluations (5.1), which are of the asymptotic form (5.2) for small

values of t, may be solved by numericalintegration. It follows from these

equations that the functions I_ and Ap approach a constant value (corre-

sponding to flow past a sharp-nosed cone) for large values of t:

K2
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Fig. 11.
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Fig. lZ. Fig. 13.
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tions:
Fig. ii shows graphs of the relationships derived from these equa-

_ - _1--5-- + _ Po 7"_

(_--the angle made by the chock with the direction ,)f oncoming flow) and

compares them with the exact values [2Z].

Calculations performed for the case where K=_ (i.e. neglecting the

initial gas pressure) disclosed the following intere_;ting features of the

behavior of the solution. The pressure coefficient )n the cone, which equals

infinity at the leading point, decreases rapidly as -_e move along the genera-

trix of the cone, in some segment reaching values 1hat are considerably

below those recorded for a sharp-nosed cone having the same angle of taper

(see curve in Fig. 12), where:

[g_p* _0 v2t_n2_ x* = t_n2_

Accordingly, the angle _ between the shock a:d the direction of on-

coming flow also has a minimum (curve in Fig. 13) This qualitative
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Fig. i4.

feature of the flow pattern is retained for values of the similitude parameter

K of the order of unity, m.s is evidenced by experimental data securcd [23]

in flow over a blunt-nosed cone with a i0 ° half-angle of taper at Mach 6.85

(i.e. at K=i.Z). Fig. tZ and Fig. i3 are plots of the results of these experi-

ments, while Fig. i4 shows photographs of the flow past blunt- and sharp-

nosed cones.

Since the pressure on an appreciable portion of the surface of a blunt-

nosed cone is less than that on the surface of a sharp-nosed cone, the total

drag on a blunt-nosed cone may well prove to be less than the drag on a

sharply tapered cone.

The drag coefficient for a blunt-nosed cone (for K----co) is:

v _ i i + 2 Apt d tan2_ 0.96
Cx 2x_2 _ t_---_-_

The drag coefficient for the blunt-nosed cone has a minimum at the

value of I/d that is indicated within the parentheses; the relative decrease

in drag compared to that on a sharp-nosed cone Is as much as 10% (Fig 12).
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